
CS 594 Modern Reinforcement Learning

Lecture 2: Monte Carlo and Temporal Difference Methods



Reinforcement Learning

[Slides adapted from those created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All materials available at http://ai.berkeley.edu.]



Markov Decision Processes

▪ Trajectory S0, A0, R1, S1, A1, R2, …

▪ A (finite) MDP is defined by:
▪ A finite set of states s  S
▪ A finite set of actions a  A
▪ A finite set of rewards r  R
▪ Dynamics p(s’,r|s,a) = Pr(St=s’,Rt=r|St-1=s,At-1=a)
▪ Discount Rate 𝛾
▪ Possibly start state (distribution), terminal state

▪ New twist: don’t have access to dynamics!



Policy Evaluation



Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know the dynamics

▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning!  You actually take actions in the world.



Monte Carlo Estimates

▪ Estimate 𝑣𝜋 𝑠

▪ Can we do this without the dynamics or even the policy???

▪ Given realized trajectory s0, a0, r1, s1, a1, r2, s2, …

▪ 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠]

▪ Gt = Rt+1 + 𝛾Rt+2 + 𝛾2Rt+2 + … = σ𝑘=0
𝑇 𝛾𝑘𝑅𝑡+𝑘+1

▪ σ𝑘=0
𝑇 𝛾𝑘𝑟𝑡+𝑘+1

▪ Correct on average, but might have high variance



Improved Estimates By Averaging

▪ Get samples g1(s),…,gn(s)

▪ Estimate 𝑣𝜋 𝑠 ≈
1

𝑛
σ𝑖 𝑔𝑖(𝑠)



Incremental Average Computation

▪ 𝑣1 𝑠 = 𝑔1 𝑠

▪ 𝑣2 𝑠 =
1

2
𝑔1 𝑠 + 𝑔2(𝑠)

▪ 𝑣3 𝑠 =
1

3
𝑔1 𝑠 + 𝑔2 𝑠 + 𝑔3(𝑠)

▪ 𝑣2 𝑠 =
1

2
𝑣1 𝑠 + 𝑔2(𝑠)

▪ 𝑣3 𝑠 =
1

3
2𝑣2(𝑠) + 𝑔3(𝑠)

▪ 𝑣𝑘 𝑠 = 𝑣𝑘−1 𝑠 +
1

𝑘
(𝑔𝑘 𝑠 − 𝑣𝑘−1 𝑠 )



Temporal Difference Learning



TD(0)

▪ Monte Carlo Average Estimate: 

𝑣𝑘 𝑠 = 𝑣𝑘−1 𝑠 + 𝛼𝑘 𝑔𝑘 𝑠 − 𝑣𝑘−1 𝑠

▪ Policy Evaluation:

𝑣𝑘 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣𝑘−1 𝑠′ )

▪ TD(0): 

𝑣𝑘 𝑠 = 𝑣𝑘−1 𝑠 + 𝛼𝑘 𝑟 + 𝛾𝑣𝑘−1 𝑠′ − 𝑣𝑘−1 𝑠



Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:



Exponential Moving Average

▪ Exponential moving average 

▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages



Importance Weighting

▪ What if we have data generated by 𝑏 but want to evaluate 𝜋?

▪ 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠]

▪ = σ𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1,…Pr𝜋
[ 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, … |𝑆𝑡 = 𝑠𝑡] σ𝑘=𝑡

𝑇 𝛾𝑘𝑟𝑘+1

▪ = σ𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1,…
ς𝑘=𝑡
𝑇−1𝜋 𝑎𝑘 𝑠𝑘 𝑝(𝑠𝑘+1, 𝑟𝑘+1|𝑠𝑘 , 𝑎𝑘)σ𝑘=𝑡

𝑇 𝛾𝑘𝑟𝑘+1

▪ = σ𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1,…
ς𝑘=𝑡
𝑇−1 𝜋 𝑎𝑘 𝑠𝑘

𝑏 𝑎𝑘 𝑠𝑘
ς𝑘=𝑡
𝑇−1𝑏 𝑎𝑘 𝑠𝑘 𝑝(𝑠𝑘+1, 𝑟𝑘+1|𝑠𝑘 , 𝑎𝑘)σ𝑘=𝑡

𝑇 𝛾𝑘𝑟𝑘+1

▪ = 𝐸𝑏 (ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘
) 𝐺𝑡 𝑆𝑡 = 𝑠]



On-policy TD Learning



Problems with TD Value Learning

▪ TD value learning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’



Q TD(0)

▪ TD(0): 

𝑣𝑘 𝑠 = 𝑣𝑘−1 𝑠 + 𝛼𝑘 𝑟 + 𝛾𝑣𝑘−1 𝑠′ − 𝑣𝑘−1 𝑠

▪ Q-version of TD(0): 

𝑞𝑘 𝑠, 𝑎 = 𝑞𝑘−1 𝑠, 𝑎 + 𝛼𝑘 𝑟 + 𝛾𝑞𝑘−1 𝑠′, 𝑎′ − 𝑞𝑘−1 𝑠, 𝑎



Sarsa

Initialize state s, action a

Do:

▪ Take action a

▪ Observe r, s’

▪ Choose a’ based on 𝜋(𝑞)

▪ 𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝑞 𝑠′, 𝑎′ − 𝑞 𝑠, 𝑎

▪ s = s’, a=a’

Until episode ends (or forever)



Expected Sarsa

Initialize state s, action a

Do:

▪ Take action a

▪ Observe r, s’

▪ Choose a’ based on 𝜋(𝑞)

▪ 𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝐸𝑎′′~𝜋 𝑞 [𝑞 𝑠′, 𝑎′′ ] − 𝑞 𝑠, 𝑎

▪ s = s’, a=a’

Until episode ends (or forever)



Off-policy TD Learning



Expected Sarsa

Initialize state s, action a

Do:

▪ Take action a

▪ Observe r, s’

▪ Choose a’ based on 𝜋(𝑞)

▪ 𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝐸𝑎′′~𝜋 𝑞 [𝑞 𝑠′, 𝑎′′ ] − 𝑞 𝑠, 𝑎

▪ s = s’, a=a’

Until episode ends (or forever)



Q-Learning

Initialize state s, action a

Do:

▪ Take action a

▪ Observe r, s’

▪ Choose a’ based on 𝜋(𝑞)

▪ 𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾maxa′′[𝑞 𝑠′, 𝑎′′ ] − 𝑞 𝑠, 𝑎

▪ s = s’, a=a’

Until episode ends (or forever)



Q-Learning

▪ TD Form:

𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
a′′

[𝑞 𝑠′, 𝑎′′ ] − 𝑞 𝑠, 𝑎

▪ 411 Form:

𝑞 𝑠, 𝑎 = (1 − 𝛼)𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
a′′

[𝑞 𝑠′, 𝑎′′ ]



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Convergence of TD Methods



Robbins-Monro Conditions

▪ For all pairs (s,a):

▪ σ𝑡 𝛼𝑡(𝑠, 𝑎) = ∞

▪ σ𝑡 𝛼𝑡 𝑠, 𝑎
2
< ∞

▪ They go to zero but not too fast

▪ Implicit: Each (s,a) is visited an infinite number of times

▪ Need to explore

▪ E.g. 𝜖-greedy



Summary: Monte Carlo and TD Methods

▪ Monte Carlo

▪ A sampled trajectory is an unbiased estimate of the return

▪ Reduce noise by averaging multiple samples

▪ Use importance weighting to evaluate a different policy 

▪ TD Methods

▪ You don’t have to use the entire trajectory to do Monte Carlo updates

▪ You can even adjust the policy while learning

▪ Robbins-Monro conditions for convergence


