CS 594 Modern Reinforcement Learning

Lecture 2: Monte Carlo and Temporal Difference Methods



Reinforcement Learning

[Slides adapted from those created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]



Markov Decision Processes

= Trajectory S, Ay, Ry, S1, AL R,

= A (finite) MDP is defined by:
= Afinite set of statess € S
= Afinite set of actionsa € A
= Afinite set of rewardsr € R
" Dynamics p(s’,r|s,a) = Pr(S;=s’,R.=r|S, ;=s,A, ;=a)
= Discount Rate y
= Possibly start state (distribution), terminal state

= New twist: don’t have access to dynamics!



Policy Evaluation




Passive Reinforcement Learning

= Simplified task: policy evaluation
= |nput: a fixed policy m(s)
= You don’t know the dynamics
= Goal: learn the state values

" |n this case:
= |Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.




Monte Carlo Estimates

Estimate v, (s)
Can we do this without the dynamics or even the policy???

Given realized trajectory s, ag, 1, Sy, @1, 5, Sy, -

v (s) = E;|Ge | S¢ = 5]
G, =Ry + YRy + VZRt+2 t .= £=0 Vth+k+1

T k
k=0V Tt+k+1
Correct on average, but might have high variance



Improved Estimates By Averaging

= Get samples g,(s),...,8,(s)

» Estimate v,(s) = % 2. 9i(s)



Incremental Average Computation

= v1(s) = g1(5)
= v,(s) = %(91(5) g2(s))

= v3(s) = 2 (g1(5) + g2(5) + g3(5))
= v5(s) = - (01(5) + g2(5))
= v3(s) = - (2v(5) + g3(5))

= 0 (s) = Vo1 () + 1 (gi(s) — vi—1(5))




Temporal Difference Learning




TD(0)

= Monte Carlo Average Estimate:
U (S) = vg—1(s) + “k(gk(S) — Vk—1(5))

= Policy Evaluation:

v(s) = ) 7(als) ) p(s',rls, )+ yvia(s)

a

= TD(O):
Vi (s) = vg_1(s) + “k(r + Y V—1(s") — ”Uk—1(5))



Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: V7T (s) < V™(s) + a(sample — V" (s))




Exponential Moving Average

= Exponential moving average
* The running interpolation update: x,, = (1 — CI{) +Tp—1 + Q- Tn

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
I1+(1—-a)+(1—-a)2+...

Ly =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages



Importance Weighting

What if we have data generated by b but want to evaluate r?
U (s) = ExlGe | S¢ = 5]

_ _ T .k
= Zat,rtﬂ,stﬂ,... I:Tr[ Aty Te41) Se1s - |St = St] D=t V" Tk+1

_ T—1 T
= Zat,rtﬂ,stﬂ,... k=t (ak|s)p(Skt1 Tk Sk Ak) L=t Vk""k+1

_ Z T—1 n(ak|Sk)
apTerySer Hk=t g, 1s0)

T—1 T
[1x=; b(ak|s)p(Sk+1, Te+1|Sk, Ax) k=t Vk?”k+1

= By | (T2 57555 Ge | e = 5]




On-policy TD Learning




Problems with TD Value Learning

= TD value learning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a
Q(s,a) =Y T(s,a,5') |R(s,a,5") + vV ()]

= |dea: learn Q-values, not values

= Makes action selection model-free too!




= TD(0):

Q TD(0)

Vi (S) = vg_1(s) + “k(r + YVr-_1(s) — Vk—1(5))

= Q-version of TD(0):
qr (s, a) = qi-1(s,a)

ak(r =

- Yqr-1(s’, @) — qx_1(s, a))



Sarsa

Initialize state s, action a

Do:

= Take action a

= Observer, s’

" Choose a’ based on (q)

" q(s,a) = q(s,a) + a(r +yq(s',a") — q(s,a))
" =5 a=a’

Until episode ends (or forever)



Expected Sarsa

Initialize state s, action a
Do:

= Take action a

= Observer, s’

" Choose a’ based on (q)

" g(s,a) =q(s,a) + «a (r +YE g qpyla(s’,a”)] — q(s, a))
" 5=¢ a=a’
Until episode ends (or forever)



Off-policy TD Learning




Expected Sarsa

Initialize state s, action a
Do:

= Take action a

= Observer, s’

" Choose a’ based on (q)

" g(s,a) =q(s,a) + «a (r +YE g qpla(s’,a”)] —q(s, a))
" 5=¢ a=a’
Until episode ends (or forever)



Q-Learning

Initialize state s, action a

Do:

= Take action a

= Observer, s’

" Choose a’ based on (q)

" q(s,a) = q(s,a) + a(r + y max,,, [q(s’,a")] — q(s, a))
" s=¢,a=a’

Until episode ends (or forever)



Q-Learning

= TD Form:
q(s,a) =q(s,a) + a (r +ymax[q(s’,a”)] — q(s, a))

" 411 Form:
4G5, @) = (1 - @q(s,) + (r +y max|q(s',a)] )



Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)



Convergence of TD Methods

Theorem 1 A random iterative process Api1(z) = (1—an(2))An(2)+5n(z)Fu(z)
converges to zero w.p.1 under the following assumptions:

1) The state space is finite.

2) Zn 0"’l»(‘r) = oo, Zn O’ﬁ(x) < Op’ Znﬁ"(x) = oC, Zn 6721(1‘) < oo, and
E{B.(2)|P,} < E{an(z)|Pn} uniformly w.p.1.

3) NE{Fa(2)|Pa} [lw< 7 [| An |lw, where y € (0,1).
4) Var{F,(z)|P.} < C(1+ || An ||w)?, where C is some constant.

Heve Py = {85, Dineiyiocr s Bayely oon v OpmTim sy P tysesy stands for the past af slep
n. Fp(z), an(z) and B,(z) are allowed to depend on the past insofar as the above
conditions remain valid. The notation || - ||w refers to some weighted mazimum
norm.

Lemma 1. Consider a stochastic process (a;, A;, Fy), t > 0, where a;, As, Fr 0 X — N
satisfy the equations

A1) = —o,(x)DA(x) + o () Fi(x), xeX, 1=0,1,2,....
Let P, be a sequence of increasing o -fields such that oy and Ay are Py-measurable and
a;, Ns and Fi_y are Pi-measurable, t = 1,2, .... Assume that the following hold:

1. the set X is finite.

2.0<a(x) <1, Y a(x) =00, Y, a7 (x) < oowp.l.

3. NE{F, O PHIw < k| Al + ¢, where k € [0, 1) and ¢, converges to zero w.p. 1.
4, Var{F,(x)|P,} < K(1 + ||A/|lw)?, where K is some constant.

Then, A, converges to zero with probability one (w.p.1).



Robbins-Monro Conditions

= For all pairs (s,a):

" lrai(s,a) = oo

" Zt(“t(S; a))z < o

" They go to zero but not too fast

" Implicit: Each (s,a) is visited an infinite number of times
= Need to explore
= E.g. e-greedy



Summary: Monte Carlo and TD Methods

= Monte Carlo
= A sampled trajectory is an unbiased estimate of the return
= Reduce noise by averaging multiple samples
= Use importance weighting to evaluate a different policy

= TD Methods
" You don’t have to use the entire trajectory to do Monte Carlo updates
" You can even adjust the policy while learning
= Robbins-Monro conditions for convergence



