
CS 594 Modern Reinforcement Learning

Lecture 5: MARL and MCTS



Announcements

▪ HW2 Released

▪ Resources being added to course website



Markov Decision Processes

▪ Trajectory S0, A0, R0, S1, A1, R1, …

▪ A (finite) MDP is defined by:
▪ A finite set of states s  S
▪ A finite set of actions a  A
▪ A finite set of rewards r  R
▪ Dynamics p(s’,r|s,a) = Pr(St=s’,Rt=r|St-1=s,At-1=a)
▪ Discount Rate 𝛾
▪ Possibly start state (distribution), terminal state

▪ Derived Quantities:
▪ State transition probabilities p(s’|s,a) = Pr(St=s’|St-1=s,At-1=a) = Σ𝑟∈𝑅 p(s’,r|s,a)
▪ Expected rewards r(s,a) = E[Rt|St-1=s,At-1=a] = Σ𝑟∈𝑅r Σ𝑠′∈𝑆 p(s’,r|s,a)
▪ Or r(s,a,s’) = E[Rt|St-1=s,At-1=a, St=s’] = Σ𝑟∈𝑅r p(s’,r|s,a) / p(s’|s,a) 



Markov Games (a.k.a. Stochastic Games)

▪ A finite set of players i  N
▪ A finite set of states s  S
▪ A finite set of actions for each player ai  Ai

▪ A finite set of rewards r  R
▪ Dynamics p(s’,r1,…,rn|s, a1,…,an)



Independent Q-learning

▪ 𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
a′′

[𝑞 𝑠′, 𝑎′′ ] − 𝑞 𝑠, 𝑎

▪ What might go wrong?

▪ Environment is non-stationary



Joint Q-learning

▪ 𝑞𝑖 𝑠, 𝑎1, 𝑎2 = 𝑞𝑖 𝑠, 𝑎1, 𝑎2 + 𝛼 𝑟𝑖 + 𝑣𝑖(𝑠
′) − 𝑞𝑖 𝑠, 𝑎1𝑎2

▪ How should we compute 𝑣𝑖(𝑠
′)?

▪ Special case: 𝑟2 = −𝑟1
▪ “Zero Sum”

▪ Implies 𝑣2 = −𝑣1 and 𝑞2 = −𝑞1



Min-Max-Q

▪ Player 1 wants to maximize 𝑞1, player 2 wants to minimize it

▪ von Neumann Minimax Theorem:
▪ 𝑣∗ 𝑠 = max

𝜋1(𝑠)
min𝜋2(𝑠) 𝑞1(𝑠, 𝜋1(𝑠), 𝜋2(𝑠)) = min𝜋2(𝑠)max𝜋1(𝑠) 𝑞1 𝑠, 𝜋1(𝑠), 𝜋2(𝑠)

▪ 𝑞1 𝑠, 𝑎1, 𝑎2 = 𝑞1 𝑠, 𝑎1, 𝑎2
+𝛼 𝑟𝑖 +m𝑎𝑥

𝜋1
min
𝑎2

𝑞1 𝑠, 𝑎1, 𝑎2 − 𝑞1 𝑠, 𝑎1𝑎2

Converges under Robbins Munro conditions!



Nash-Q

▪ 𝑞𝑖 𝑠, 𝑎1, 𝑎2 = 𝑞𝑖 𝑠, 𝑎1, 𝑎2 + 𝛼 𝑟𝑖 + 𝑣𝑖(𝑠
′) − 𝑞𝑖 𝑠, 𝑎1𝑎2

▪ 𝑣𝑖 𝑠
′ = 𝐸𝜋1,𝜋2[𝑞𝑖(𝑠

′, 𝑎1′, 𝑎2′)]

▪ Need a way of predicting what the other player will do

▪ Compute an equilibrium

▪ Converges under more complex conditions



Three Learning Settings

▪ Planning with known dynamics

▪ Reinforcement Learning

▪ Simulation

▪ With simulator, can reset and “roll out” repeatedly from a state



Rollout Algorithms

▪ I am in state 𝑠 and have a policy 𝜋.  What should I do?

▪ Want to learn something smarter than just 𝜋(𝑠)

▪ Idea: estimate 𝑞𝜋(𝑠, 𝑎) via Monte Carlo

▪ Intuitively converges via Policy Improvement Theorem!



Rollout Algorithms



Rollout Algorithms



Monte Carlo Tree Search (MCTS)

Repeat until bored:

1) Selection: Use current estimates to choose a leaf of tree policy 

2) Expansion: (Optional) add children of leaf to the tree policy

3) Simulation: Roll out from (new) leaf

4) Backup: Update all relevant MC estimates based on return



Monte Carlo Tree Search (MCTS)



Multi-agent Monte Carlo Tree Search (MCTS)



Summary

▪ MARL – Need to predict actions of others

▪ Not too hard in two-player, zero-sum settings

▪ Tricky in general

▪ Rollouts

▪ Use Monte Carlo estimates for policy improvement 

▪ Can focus search (MCTS)

▪ Works even with multiple agents


