CS 594 Modern Reinforcement Learning

Lecture 5: MARL and MCTS

Announcements

= H\W?2 Released

= Resources being added to course website

Markov Decision Processes

= Trajectory S,, Ay Ry, S1, Ay Ry, o

= A (finite) MDP is defined by:
= Afinite set of statess € S
= Afinite set of actionsa € A
= Afinite set of rewardsr € R
" Dynamics p(s’,r|s,a) = Pr(S;=s’,R.=r|S, ;=s,A, =a)
= Discount Rate y
= Possibly start state (distribution), terminal state

= Derived Quantities:
= State transition probabilities p(s’|s,a) = Pr(S,=s’[S, ;=s,A,.;=a) = Z;,-¢g p(s',r]s,a)
= Expected rewards r(s,a) = E[R,|S,;=5,A.;=a] = X;-erl Xs/es P(S,r]s,a)
= Orr(s,a,s’) =E[R,|S;1=s,A;1=a, S;=5"] = Z,.err p(s',r]s,a) / p(s’|s,a)

Markov Games (a.k.a. Stochastic Games)

" A finite set of playersi € N

= A finite set of statess € S

= A finite set of actions for each player a, € A
= A finite set of rewardsr € R

= Dynamics p(s’,ry,...,r,|s, a4,...,a,)

Independent Q-learning
" q(s,a) =q(s,a) + (r +ymax[q(s’,a”)] — q(s, a))

= What might go wrong?

" Environment is non-stationary

Joint Q-learning
qi(s,a1,a;) = qi(s,aq,a;) + “(Ti +v;(s") — q;(s, a1a2))
How should we compute v;(s")?

Special case: p, = —1y

= “Zero Sum”

|mp|ie5 Vy = —V1q and dJo, = —({q1

Min-Max-Q
" Player 1 wants to maximize g4, player 2 wants to minimize it

= von Neumann Minimax Theorem:

 .(5) = maxming,s) 41 (5,1(5), m2(5)) = Ming 5) Maxie s) (5, w1 (5), w2 (5))

" q1(s,aq,a,) = q1(s,a4,a3)

+a (ri + max min q,(s,a,a,) — q,(s, alaz))
I[%] a,

Converges under Robbins Munro conditions!

Nash-Q
qi(s,aq,a;) = q;(s,ay,a;) + “(Ti + v;(s") — qi(s, a1a2))
vi(s') = Ex m, [qi(s",ay',a;)]
Need a way of predicting what the other player will do
Compute an equilibrium

Converges under more complex conditions

Three Learning Settings

Planning with known dynamics
Reinforcement Learning

Simulation

With simulator, can reset and “roll out” repeatedly from a state

Rollout Algorithms

| am in state s and have a policy m. What should | do?
Want to learn something smarter than just 7 (s)
ldea: estimate g, (s, a) via Monte Carlo

Intuitively converges via Policy Improvement Theorem!

Rollout Algorithms

Rollout Algorithms

Monte Carlo Tree Search (MCTS)

Repeat until bored:

1) Selection: Use current estimates to choose a leaf of tree policy
2) Expansion: (Optional) add children of leaf to the tree policy

3) Simulation: Roll out from (new) leaf

4) Backup: Update all relevant MC estimates based on return

Monte Carlo Tree Search (MCTS)

Multi-agent Monte Carlo Tree Search (MCTS)

Summary

= MARL — Need to predict actions of others
= Not too hard in two-player, zero-sum settings
" Tricky in general

= Rollouts

= Use Monte Carlo estimates for policy improvement
= Can focus search (MCTS)
= Works even with multiple agents

