CS 594 Modern Reinforcement Learning

Lecture 5: MARL and MCTS

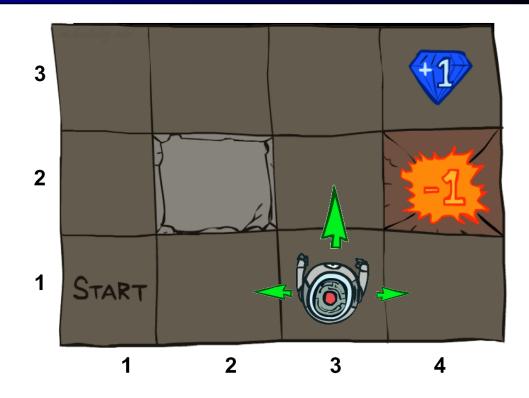
Announcements

HW2 Released

Resources being added to course website

Markov Decision Processes

- Trajectory S₀, A₀, R₀, S₁, A₁, R₁, ...
- A (finite) MDP is defined by:
 - A finite set of states s ∈ S
 - A finite set of actions a ∈ A
 - A finite set of rewards $r \in R$
 - Dynamics $p(s',r|s,a) = Pr(S_t=s',R_t=r|S_{t-1}=s,A_{t-1}=a)$
 - Discount Rate γ
 - Possibly start state (distribution), terminal state
- Derived Quantities:
 - State transition probabilities $p(s'|s,a) = Pr(S_t=s'|S_{t-1}=s,A_{t-1}=a) = \Sigma_{r \in R} p(s',r|s,a)$
 - Expected rewards $r(s,a) = E[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in R} r \sum_{s' \in S} p(s', r | s, a)$
 - Or $r(s,a,s') = E[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in R} r p(s', r | s, a) / p(s' | s, a)$



Markov Games (a.k.a. Stochastic Games)

- A finite set of players $i \in N$
- A finite set of states $s \in S$
- A finite set of actions for each player a_i ∈ A_i
- A finite set of rewards $r \in R$
- Dynamics p(s',r₁,...,r_n|s, a₁,...,a_n)

Independent Q-learning

•
$$q(s,a) = q(s,a) + \alpha \left(r + \gamma \max_{a''} [q(s',a'')] - q(s,a) \right)$$

What might go wrong?

Environment is non-stationary

Joint Q-learning

- $q_i(s, a_1, a_2) = q_i(s, a_1, a_2) + \alpha (r_i + v_i(s') q_i(s, a_1a_2))$
- How should we compute $v_i(s')$?

- Special case: $r_2 = -r_1$
 - "Zero Sum"

• Implies $v_2 = -v_1$ and $q_2 = -q_1$

Min-Max-Q

Player 1 wants to maximize q_1 , player 2 wants to minimize it

von Neumann Minimax Theorem:

•
$$v_*(s) = \max_{\pi_1(s)} \min_{\pi_2(s)} q_1(s, \pi_1(s), \pi_2(s)) = \min_{\pi_2(s)} \max_{\pi_1(s)} q_1(s, \pi_1(s), \pi_2(s))$$

•
$$q_1(s, a_1, a_2) = q_1(s, a_1, a_2) + \alpha \left(r_i + \max_{\pi_1} \min_{a_2} q_1(s, a_1, a_2) - q_1(s, a_1a_2) \right)$$

Converges under Robbins Munro conditions!

Nash-Q

• $q_i(s, a_1, a_2) = q_i(s, a_1, a_2) + \alpha (r_i + v_i(s') - q_i(s, a_1a_2))$

•
$$v_i(s') = E_{\pi_1,\pi_2}[q_i(s', a_1', a_2')]$$

Need a way of predicting what the other player will do

• Compute an equilibrium

Converges under more complex conditions

Three Learning Settings

Planning with known dynamics

Reinforcement Learning

- Simulation
- With simulator, can reset and "roll out" repeatedly from a state

Rollout Algorithms

• I am in state s and have a policy π . What should I do?

• Want to learn something smarter than just $\pi(s)$

• Idea: estimate $q_{\pi}(s, a)$ via Monte Carlo

Intuitively converges via Policy Improvement Theorem!

Rollout Algorithms

Rollout Algorithms

Monte Carlo Tree Search (MCTS)

Repeat until bored:

- 1) Selection: Use current estimates to choose a leaf of tree policy
- 2) Expansion: (Optional) add children of leaf to the tree policy
- 3) Simulation: Roll out from (new) leaf
- 4) Backup: Update all relevant MC estimates based on return

Monte Carlo Tree Search (MCTS)

Multi-agent Monte Carlo Tree Search (MCTS)

Summary

- MARL Need to predict actions of others
 - Not too hard in two-player, zero-sum settings
 - Tricky in general
- Rollouts
 - Use Monte Carlo estimates for policy improvement
 - Can focus search (MCTS)
 - Works even with multiple agents