
CS 594 Modern Reinforcement Learning

Lecture 1: Introduction

Review: Markov Decision Processes and Dynamic Programming

(Chapters 3 and 4 of Sutton and Barto)

[Slides adapted from those created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Markov Decision Processes

▪ Trajectory S0, A0, R0, S1, A1, R1, …

▪ A (finite) MDP is defined by:
▪ A finite set of states s  S
▪ A finite set of actions a  A
▪ A finite set of rewards r  R
▪ Dynamics p(s’,r|s,a) = Pr(St=s’,Rt=r|St-1=s,At-1=a)
▪ Discount Rate 𝛾
▪ Possibly start state (distribution), terminal state

▪ Derived Quantities:
▪ State transition probabilities p(s’|s,a) = Pr(St=s’|St-1=s,At-1=a) = Σ𝑟∈𝑅 p(s’,r|s,a)
▪ Expected rewards r(s,a) = E[Rt|St-1=s,At-1=a] = Σ𝑟∈𝑅r Σ𝑠′∈𝑆 p(s’,r|s,a)
▪ Or r(s,a,s’) = E[Rt|St-1=s,At-1=a, St=s’] = Σ𝑟∈𝑅r p(s’,r|s,a) / p(s’|s,a)

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

▪ Return Gt = Rt+1 + 𝛾Rt+2 + 𝛾2Rt+2 + … = σ𝑘=0
𝑇 𝛾𝑘𝑅𝑡+𝑘+1

Worth Now Worth Next Step Worth In Two Steps

Policies

Optimal policy when r(s, a, s’) = -0.03
for all non-terminals s

▪ For MDPs, we want an optimal policy *: S → A

▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes
expected return if followed

Solving MDPs

Optimal Quantities

▪ The optimal policy:
*(s) = optimal action from state s

▪ The value of a state s:
v*(s) = expected return starting in s and

acting optimally

▪ The action value of a q-state (s,a):
q*(s,a) = expected return starting out

having taken action a from state s and
(thereafter) acting optimally

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

▪ Definition of “optimal expected return” via recurrence
gives a simple one-step lookahead relationship

▪ 𝑣∗ 𝑠 = max
𝑎

𝑞∗(𝑠, 𝑎)

▪ 𝑞∗ 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

▪ 𝑣∗ 𝑠 = max
𝑎

σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣∗ 𝑠′)

▪ 𝑞∗ 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾max

𝑎′
𝑞∗ 𝑠′, 𝑎′)

a

s

s, a

s,a,s’

s’

Value Iteration

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ 𝑣∗ 𝑠 = max
𝑎

σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣∗ 𝑠′)

▪ Value iteration computes them:

▪ 𝑣𝑘+1 𝑠 = max
𝑎

σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣𝑘 𝑠′)

▪ Value iteration is just a fixed point solution method

a

V(s)

s, a

s,a,s’

V(s’)

Convergence Intuition

▪ How do we know the vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth T, then vT holds
the actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state vk and vk+1 can be viewed as depth
k+1 expected returns in nearly identical settings

▪ The difference is that on the bottom layer, vk+1 has actual
rewards while vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge

Convergence Proof for Case 2

▪ Let 𝑋, 𝑑 be a complete metric space (e.g. 𝑅𝑘 with some norm)

▪ 𝑇: 𝑋 → 𝑋 is a contraction map if d(T x , T y) ≤ 𝑞𝑑(𝑥, 𝑦) for some
𝑞 ∈ [0,1) and all x,y

▪ Banach Fixed Point Theorem: a contraction map T has a unique fixed point
𝑥∗. Consider the sequence 𝑥𝑛+1 = 𝑇(𝑥𝑛). Then lim

𝑛→∞
𝑥𝑛 = 𝑥∗

▪ Apply the theorem with the value iteration operator as T, 𝑞 = 𝛾, and

𝑑 𝑣, 𝑣’ = 𝑣 − 𝑣′
∞
= max

𝑠∈𝑆
|𝑣 𝑠 − 𝑣′ 𝑠 |

Policy Methods

Policy Evaluation

Fixed Policies

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do

The Bellman Equations For Fixed Policies

▪ Definition of “optimal expected return” via recurrence
gives a simple one-step lookahead relationship

▪ 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠]

▪ 𝑣𝜋 𝑠 = σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋 𝑠′)

▪ 𝑞𝜋 𝑠, 𝑎 = 𝐸 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

▪ 𝑞𝜋 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑞𝜋(𝑠

′, 𝜋(𝑠′)))

a

s

s, a

s,a,s’

s’

Policy Evaluation

▪ How do we calculate the v’s for a fixed policy ?

▪ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

▪ 𝑣𝑘+1 𝑠 = σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣𝑘 𝑠′)

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system

▪ Solve with linear programming!

Policy Extraction

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

Policy Iteration

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Policy Improvement Theorem

If 𝑞𝜋 𝑠, 𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠 for all 𝑠 ∈ 𝑆

Then

𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠 for all 𝑠 ∈ 𝑆.

Moreover, strictness in the former implies strictness in the latter.

Proof: See text.

Corollary: Policy iteration strictly improves the policy at each policy
improvement step and therefore converges in a finite number of
steps.

Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead

▪ They differ only in whether we plug in a fixed policy or max over actions

▪ Next time: Chapters 5 and 6

