CS 594 Modern Reinforcement Learning

Lecture 1: Introduction

Review: Markov Decision Processes and Dynamic Programming
(Chapters 3 and 4 of Sutton and Barto)

[Slides adapted from those created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Example: Grid World

A maze-like problem
= The agentlivesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Markov Decision Processes

= Trajectory S,, Ay Ry, S1, Ay Ry, e

= A (finite) MDP is defined by:
= Afinite set of statess € S
= Afinite set of actionsa € A
= Afinite set of rewardsr € R
" Dynamics p(s’,r|s,a) = Pr(S;=s’,R.=r|S, ;=s,A, =a)
= Discount Rate y
= Possibly start state (distribution), terminal state

= Derived Quantities:
= State transition probabilities p(s’|s,a) = Pr(S,=s’ S, ;=s,A.;=a) = Z,-¢g p(s',r]s,a)
= Expected rewards r(s,a) = E[R,|S,;=5,A.;=a] = X;-erl Xs/es P(S,r]s,a)
= Orr(s,a,s’) =E[R,|S,;=s,A.1=a, S=5'] = Z,.err p(s',r]s,a) / p(s’|s,a)

Discounting

" [t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

w{
© @9

1 gl v

Worth Now Worth Next Step Worth In Two Steps

" Return Gt = Rt+1 + th+2 + yth+2 .= Z£=O yth+k+1

Policies

= For MDPs, we want an optimal policy t*: S - A
= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected return if followed

Optimal policy when r(s, a, s’) =-0.03
for all non-terminals s

Solving MDPs

Optimal Quantities

" The optimal policy:
n«(s) = optimal action from state s

A c sisa
YA state
" The value of a state s: A
V«(s) = expected return starting in s and o ‘' (s,a)isa
acting optimally g-state
s,a,s’ (s,a,s’) is a

" The action value of a g-state (s,a):

o transition
g«(s,a) = expected return starting out /
having taken action a from state s and « .
(thereafter) acting optimally

[Demo — gridworld values (L8D4)]

The Bellman Equations

The Bellman Equations

Definition of “optimal expected return” via recurrence
gives a simple one-step lookahead relationship

v,(s) = maxq.(s,a)
a

q*(s, a) = E[Rt+1 + VV*(St+1)| St =5,4; = af

v.(s) = max s P, 7ls, a)(r + yv.(s"))

q.(s,a) =Yg, p(s’,rls,a)(r +vy max q.(s’,a'))

Value lteration

Value lteration

Bellman equations characterize the optimal values:

v,.(s) = max 25 P, 7ls, a)(r + yv.(s"))

Value iteration computes them:

vk+1(s) — maaXZS”r p(S',‘I”|S, a)(r T yvk(sl))

Value iteration is just a fixed point solution method

Convergence Intuition

How do we know the v, vectors are going to converge?

Case 1: If the tree has maximum depth T, then v; holds
the actual untruncated values

Case 2: If the discount is less than 1

Sketch: For any state v, and v,,, can be viewed as depth
k+1 expected returns in nearly identical settings

The difference is that on the bottom layer, v,,, has actual
rewards while v, has zeros

That last layer is at best all Ry;5x

It is at worst Ry,

But everything is discounted by y* that far out
So V, and V,,, are at most y* max|R| different
So as k increases, the values converge

Vit1(s)

\ /

Convergence Proof for Case 2

Let (X, d) be a complete metric space (e.g. R with some norm)

T:X — X is a contraction map if d(T(x), T(y)) < qd(x,y) for some
q € [0,1) and all x,y

Banach Fixed Point Theorem: a contraction map T has a unique fixed point
x”*. Consider the sequence x,,,; = T(x,,). Then lim x,, = x*

n—00

Apply the theorem with the value iteration operatoras T, g = y, and
d(v,v') = Hv - v’I‘ = max lv(s) —v'(s)]
o S

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 1 says to do

AS

The Bellman Equations For Fixed Policies

Definition of “optimal expected return” via recurrence
gives a simple one-step lookahead relationship

Ur($) = ExlGe | S = 5]

Un(s) = Lam(als) Xy, p(s',7ls, a)(r + yvg(s'))

q.(s,a) = E|G¢| S; = s5,A; = a]

An(s,a) = Ly p(s',7|s,) (r + ¥qr(s',(s)))

Policy Evaluation

How do we calculate the v’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vi+1(S) = Lam(als) Xy p(s',rls, @) (r + yvi(s’))
Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with linear programming!

Policy Extraction

= How should we act?

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: %%

m*(s) = arg max Q*(s, a) %%

Policy Iteration

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!

= Can converge (much) faster under some conditions

Policy Improvement Theorem

If g (s,'(s)) = vy (s) foralls €S
Then
v_1(s) = v.(s) foralls €S.
Moreover, strictness in the former implies strictness in the latter.

Proof: See text.

Corollary: Policy iteration strictly improves the policy at each policy
improvement step and therefore converges in a finite number of

steps.

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are — they are all variations of Bellman updates
* They all use one-step lookahead
* They differ only in whether we plug in a fixed policy or max over actions

= Next time: Chapters 5 and 6

